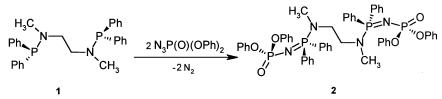


Tetrahedron Letters 42 (2001) 2733-2734

Synthesis and X-ray crystal structure of a novel long chain acyclic phosphazene, N,N'-{dimethyl-bis(diphenylphosphiniminophosphorane)}ethylenediamine {(PhO)₂P(O)N=PN(CH₃)CH₂}₂, obtained via a Staudinger reaction

Maravanji S. Balakrishna,* Rita M. Abhyankar and Mrinalini G. Walawalker

Department of Chemistry, Indian Institute of Technology, Bombay 400 076, India


Received 9 November 2000; revised 26 January 2001; accepted 7 February 2001

Abstract—The title compound was synthesized by the reaction of N,N'-dimethyl-N,N'-bis(diphenylphosphino)ethylenediamine with phosphoryl azide and characterized by mass spectrometry, microanalysis, and ³¹P and ¹H NMR spectroscopy and the structure was confirmed by single crystal X-ray studies. © 2001 Elsevier Science Ltd. All rights reserved.

Since the utilization of the well-known Staudinger reaction in the clean synthesis of phosphinimines, a large number of mono- and bis(phosphines) have been effectively converted into the corresponding iminophosphoranes,¹ which were found to be excellent reagents in bridging the main group elements with transition elements.^{2,3} The versatility of phosphinimines in the synthesis of heterocycles embedded with high-valent transition metals is well documented.⁴ The partial oxidation of phosphorus centers in bidentate or tridentate ligands with organic azides has led to very useful heterofunctional systems, which have created a host of new coordination and organometallic complexes.⁵⁻⁸

We report here a new member of this class of compounds, the first example of an acyclic bis(iminophosphorane) derivative of N,N'-dimethylethylenediamine having as many as 12 atoms in the chain with as many as six donor atoms. This compound was synthesized by the direct reaction of N,N'-dimethyl-N,N'-bis-(diphenylphosphino)ethylenediamine⁹ with a phosphoryl azide and isolated as an air-stable white crystalline solid in quantitative yield.¹⁰ The ³¹P{¹H} NMR spectrum of **2** shows two doublets as expected for the phosphinimine and phosphoryl centers at δ 23.8 and 9.0, respectively, with a ²J_{PP} value of 32 Hz. The ¹H NMR spectrum of **2** shows a doublet at δ 2.28 for the methyl protons and a multiplet at δ 2.98 for the ethylene protons. Further evidence comes from microanalysis and the high-resolution mass spectrum (HRMS), which shows a mass corresponding to a molecular weight of 951. The structure of compound **2** was confirmed by a single crystal X-ray structure determination.¹¹

The ORTEP¹² plot (Fig. 1) establishes the presence of crystallographically imposed centrosymmetry. The core looks like a diphenyl molecule opened on opposite sides, resembling an unlocked 'handcuff'. The P(1)–N(1) bond distance of 1.651(2) Å is slightly shorter than that of a diphosphine (Ph₂PN(CH₂Ph)-CH₂CH₂(PhCH₂)NPPh₂: 1.680(2) Å), which is similar to the parent diphosphine **1** but with different sub-

Keywords: phosphazene; phosphinimines; Staudinger reaction; X-ray structure.

* Corresponding author. Fax: (+91) 22 572 3480; e-mail: krishna@chem.iitb.ernet.in

^{0040-4039/01/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00236-2

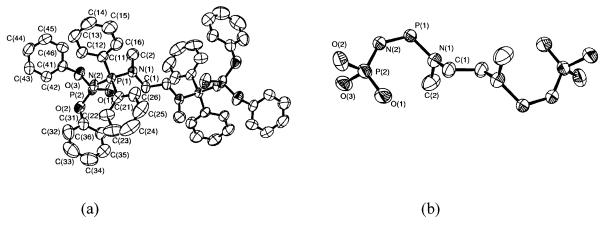


Figure 1. (a) Molecular structure of 2 (perspective view) and (b) the core of 2 displaying only the skeleton atoms. For clarity hydrogen atoms are omitted. Selected bond distances (Å) and bond angles (°): P(1)-N(1) 1.651(2), P(1)-N(2) 1.572(2), P(1)-C(21) 1.803(3), P(1)-C(11) 1.810(3), P(2)-O(1) 1.475(2), P(2)-N(2) 1.579(2), P(2)-O(3) 1.595(2), P(2)-O(2) 1.601(2), N(1)-C(1) 1.474(3), N(1)-C(2) 1.474(4), N(2)-P(1)-N(1) 118.92(11), P(2)-N(2)-P(1) 133.94(14), P(1)-N(1)-C(2) 118.65(19), P(1)-N(1)-C(1) 118.44(18), N(2)-P(2)-O(1) 120.04(12).

stituents on the amine nitrogen.⁹ The structure of the parent diphosphine is not known. The P(1)–N(2) (1.572(2) Å) and P(2)–N(2) (1.579(2) Å) bond distances are quite comparable although the former is a double bond. This may be due to the strong π -acceptor nature of phosphoryl group that has a doubly bonded oxygen atom beside two electron-withdrawing phenoxy groups. The P(2)–N(2)–P(1) bond angle is 133.94(14)° whereas the total bond angles around the amine nitrogen are 350°, which indicates that the planar geometry around the amine nitrogen is slightly distorted.

The compound described here represents the first example of a long chain acyclic phosphazene that can be a potential multidentate ligand due to the presence of six donor atoms with a relatively flexible backbone. Further utilization of this compound in coordination chemistry of transition metals, as well as f-block elements, and in polymerization studies is currently in progress.

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), New Delhi, and the Department of Atomic Energy (DAE), Bombay, for funding.

References

- 1. Gololobov, Y. G.; Kaushkin, L. F. *Tetrahedron* 1992, 48, 1353–1406.
- Imhoff, P.; Nefkens, S. C. A.; Elsevier, C. J.; Goubtiz, K.; Stam, C. H. Organometallics 1991, 10, 1421–1431.

- Imhoff, P.; Asselt, R. V.; Ernsting, J. M.; Vreize, K.; Elsevier, C. J. Organometallics 1993, 12, 1523–1536.
- 4. Witt, M.; Roesky, H. W. Chem. Rev. 1994, 94, 1163-1181.
- Balakrishna, M. S.; Santarsiero, B. D.; Cavell, R. G. Inorg. Chem. 1994, 33, 3079–3084.
- Grim, S. O.; Kettler, P. B. J. Chem. Soc., Chem. Commun. 1991, 979–980.
- Katti, K. V.; Cavell, R. G. Comments Inorg. Chem. 1990, 10, 53–73.
- Reed, R. W.; Santarsiero, B.; Cavell, R. G. Inorg. Chem. 1996, 35, 4292–4300.
- Balakrishna, M. S.; Abhyankar, R. M.; Mague, J. T. J. Chem. Soc., Dalton Trans. 1999, 1407–1412.
- 10. Compound 2: Yield 96%, mp 188–190°C. Anal. calcd for $C_{52}H_{50}N_4O_6P_4$: C, 65.69; H, 5.30; N, 5.89. Found: C, 65.62; H, 5.30; N, 5.81%. MS (EI, m/z): 951. ¹H NMR (400 MHz, CD₂Cl₂): phenyl region, 7.65, 7.50, 7.32, 7.16 (m, 40H); *N*-methyl, δ 2.28 (d, 6H, ³J_{PH}=3.6 Hz); ethyl-ene, 2.98 (m, 4H). ³¹P{¹H} NMR: δ P_(N), 23.80 (d); P_(O), 9.00 (d); (²J_{PP}=32 Hz). The compound did not give any X-ray quality crystals in dry solvents but precipitated out as a microcrystalline material without any evidence of water molecules by microanalysis and ¹H NMR data. However, when air was bubbled for a few seconds through a dichloromethane–hexane (1:1) solution, X-ray quality crystals were obtained with water of solvation and are located in the diffraction map.
- 11. Crystal data: $C_{52}H_{50}N_4O_6P_4\cdot 2H_2O$, M=986.87, monoclinic, $P2_1/c$, a=9.5356(14), b=12.9818(13), c=21.0894(18) Å, $\beta=102.235(10)^\circ$, V=2551.3(5) Å³, T=293(2) K, Z=2, $D_{calcd}=1.285$ g cm⁻³, F(000)=1036, $\mu=2.05$ cm⁻¹, R=0.0612, $R_w=0.0682$. Full details are provided as Supporting Information. CCDC reference no. 150232.
- 12. Farrugia, L. J. J. Appl. Crystallogr. 1997, 32, 565.